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INTRODUC. LON

Sea ice is affected by ice motion in two ways: first, the velocity
advects ice from one region to another, and second, the deformations associ-
ated with spatial differences in velocity are important to the heat balance--
through open water formation--and to the momentum balance--through ridging
and ice stress. This report describes research applicable to both aspects
of ice motion, but concentrating on the spatial structure of the velocity
field and what this structure tells us about deformation.

The work is described in three parts., The first is the measurement of
ice displacement from synthetic aperture radar (SAR) on the SEASAT satellite.
The important feature of these measurements is their h!sh spatial density--

2 km intervals along an 865 km track--which, clearly shows for the first time
the motion of distinct, rigid pieces of ice or floes. These measurements
show the difficulty--or at least the arbitrariness--in defining a velocity
derivative. The second subject is the analysis of these data and FGGE buoy
data to provide the spatial autocorrelation function of the velocity field
and to show how it is related to experiment design and the notion of (spatial)
velocity derivatives. Llast, a model of the velocity field as the motion of
a set of pieces shows the uncertainty in estimating the amount of opening or
ridging in an ice cover from velocity measurements at only a few points, as
was done for instance during AIDJEX.

Two papers in which these subjects are discussed in detail are presented
as appendices. Appendix A is a paper by Hall and Rothrock on the SAR measure-
ment technique and data. It has been published in the Journal of Geophysical
Research. Appendix B is a paper by Thorndike on ice kenematics. It defines
the spatial autocorrelation function, evaluates it from the SAR and buoy data
and describes the model of the piece-like velocity field; it will appear as

a chapter in a NATO volume on Air-Sea-Ice Interaction.
DISPLACEMENT MEASUREMENTS FROM SEASAT SAR

The cbjective is to compare two images of the same ice taken at two
different times and to estimate the movement of the ice during the time
interval. The difficulty is in establishing the relative location of the
two images. Our procedure was to use images from two nearly identical orbits
and to align the two images by ccmparing the portions over land. No effort
was made to establish absolute position.
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The displacement from 5 October to 8 October 1978--or equivalently,
the average velocity vver the three day interval--was measured at points
speced about every two kilometers along a line 865 km long in the Beaufort
Sea, Figures 1 and 2 in Appendix A show the location of the images and the
data. Both components of displacement are presented as a function of dis~-
tance along track. The motion of individual pieces is evident in the figures

.and can in fact be found by fitting piece-wisn: rigid body velocity profiles

to the data. The movement of several pleces 1s shown in Figure 3 of Appen-
dix A.

The along track component of displacement has an error which is zero
at the coast growing to about 3 km at the far end of the strip, This error
is due to stretching in the optical processor and could be reduced by
choosing strips with land in both ends (our strip included Banks Island but
stopped short of Siberia). The across track compone=t of displacement has
an error of 0.4 km. This error could be reduced by use of orbital data and
by correcting for the slant range distortion. We recommend these improve-

ments be made in future work with this type of data,

VELOCITY FIELD STRUCTURE

The autocorrelation function tells hov similar the velocities are at
two points a distance » apart. If r is as small as a few kilometers, the
two velocities are nearly the same; so their correlation is unity. At large
r, the two velocities are unrelated--zero correlation. The autocorreiation
is described by two functions of r. Suppose the two points lie on the x-axis.

Bll(r) is the correlation of the x velocity components, and B)(r), the y

components.
ufo) | u(r) By (r) = u(o)u(r)
z =0 x=7r
v(o0) v(r) B\ (r) = v(0)-v ()
z o z=r
-2-
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These functions have been evaluated from AIDJEX and FGGE buoy data and are
shown in F.gure 16 of Appendix B, The notable feature is that the correla-
tion length scale is about 1,000 km.

These functions have several uses. In experiment design they allow one
to choose an economical sample spacing precluding either redundant data or
data gaps. They can be used to estimate interpolation errors for a given
data set (see §5.3.3.2 of Appendix B). One can esiimate from them statis-
tics of deformational quantities involving spatial velocity differences (see
§5.4.2 and .3 of Appendix B).

The notion of the velocity gradient 9u/9x has been central to sea ice
modeling, yet there is some difficulty in defining this quantity. A deriva-

tive is normally defined as a limit hlimo ulz + h; = ulz) » but the SAR

data (Figure 12 of Appendix A) show that such a limit does not exist every-
vhere, and where it does exist it describes the rotation of a floe, not a
"large scale" gradient. The derivative exists in the mean squared sense, if

2
E h;im [u z+h KA ] = ¢ = g constant
0

where E is the expected value operator. The existence of the limit is

equivalent to
a
variance {u(z + h) ~ u(m)] ~ch , a8 h *+ 0

with a = 2. The SAR data, plotted in Figure 19 of Appendix B give a = 1,3
foru (a = 1.1 for v), giving further evidence that the velocity is too
irr.gular spatially for a good derivative to exist.

The lack of a derivative car be circumvented in two ways. The average
derivative over some region x can be evaluated as an integral of some
velocity component around the boundary of the region. The autocorrelation
functions then allow one to evaluate the error introduced by estimating that
integral with only a few (buoy) data points. (See §5.4.5 of Appendix B.)

It is important, though, to remember that the value of the average deriva-

tive depends on the size of the sampling region.
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Alternatively, one can replace the notion of derivative with velocity
differences. (See 8§5.4.2 of Appendix B.) Velocity differences exist with-
out question; they can naturally be associated with strain rates, ard their

covariances can be estimated from B|| and Bl'
MODEL OF THE FIECE-LIKE VELOCITY FIELD

The velocity field is demonstrably the movement of rigid pieces. A
model incorporating this feature can be used to examine the practice of
estimating opening and closing fridging) from velocities measured at three
or four points. We take the pieces to be defined by a rundom set of lines
(a Poisson field); the average piece size of 16 km is taken from the SAR
data. The differential movement of the pieces is given a Gaussian distri-
bution, Many realizations of this motion are simulated. For each, the
total opening (and closing) at the floe boundaries is plotted versus a
"large scale" estimate of deformation made from the velocity at three points.
Each realization gives one data peint. The ensemble of points is shown in
Figure 24 of Appendix B, The scatter shows how poorly a three point strain
rate estimate allows us to determine the actual -mall scale opening and

closing. A better parameterization would account for the scatter.
RECOMMENDATIONS FOR FUTURE WORK

Considerably moce can be dune with SEASAT SAR.
1) Further assessment of errors and tests of algorithms for eliminating
errors should be made by examining pairs of strips over land. Strips a
thousand kilometers long over the Canadian archipelago would be sujitable,
One would treat the strips as if they were over ice with land in each end,
and apply all corrections for slant range distortion, orbital diffexences
and stretching by the optical processor aud then test the central portion
of the strip to assess the remaining positioning errors.
2) SAR ice displacement measurements should be made to extend the present
measurement back into the summer season. One might expect substantial
seasonal variations in the sizec of piecec and the variance of the motion.
3) A sequence of three or more SAR strips should be analyzed to assess
the persistence of floe boundaries. Do the velocity jumps occur at the same

floe boundaries for weeks, or do floe boundaries change after several days?
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The answer is relevant to parameterizing opening and closing in terms of
sparse velocity measurements,

R TP RIS

Other new work could include:

4) The spatial velocity autocorrelations should be computed for the 1980 3
Arctic buoy data. ?
5) The random piece-like velocity field model predicts considerable
uncertainty in our estimates of open water formation and ridging based on
velocity measurements, The implication is that the thickness distribution ]
and heat flux estimates have a similar uncertainty, which has not yet been 3
evaluated. 3
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APPENDIX A

SEA ICE DISPLACEMENT FROM
SEASAT SYNTHETIC APERTURE RADAR

by R. T. Hall and D. A. Rothrock
This appendix appeared in

the Jowrnal of Geophysical Research,
Volume 86(Cl1), 11,078-82
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' ABSTRACT

Images obtained by a synthetic aperture radar on SEASAT have been used
to measure sea ice displacements over a three day interval in October 1978,
The position of a natural ice feature was measured on 5 October and again on
8 October; the difference in these two positions is a displacement. The dis-
placement of many features was measured. The tracked features lie roughly
along a line and are quite dense--about 2 km apart--over a distance of 865 km,
The displacements are about twenty kilometers. Displacement errors grow with
distance from shore becoming as large as 3 km. The graph of displacement
versus distance has occasional discontinuities of several kilometers. Displace-
ment discontinuities are accurate to * 0.07 km along track and 3X of their

magnitude across track.
INTRODUCTION

The motion of sea ice varies on all scales up to 10 km. The larger scale
motions are driven by atmospheric pressure systems. On scales less than about
102 km the motion is affected by individual ice floes. The motion has tradi-
tionally been observed by tracking particles of ice: a couple of diifting
manned camps, or a few buoys or radar reflectors. Each tracer is costly,
limiting eny experiment to on the order of ten points. Such methods do not
reveal the spatial structure of the field of motion. What is needed are
records thousands of kilometers long, sampled every kilometer or so.

Tracking natural ice features in satellite imagery improves the sampling
rate. Following recognizable leads in LANDSAT visual photographs can provide
records over 500 km long with about 25 irregularly spaced data points--an
average spacing of 20 km [Nye, 1975]. Synthetic aperture radar (SAR) has the
potential to provide yet more dense measurements, Its high resolution and
sensitivity to surface roughness allow individual roughness features to be
tracked, and these are more abundant than new Jeads.

The last decade has seen a considerable amount of radar imagery collected

from aircraft., Airborne imaging radar data from 1975 was used to provide ice
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displacements at spacings of about 10 km over an area roughly 10° km?
[Bryan et al. 1977; Leberl et al. 1979). But in general the distortion
caused by the wide look angle and the aircraft motion discouraged quanti-
tative analysis, It was not until generous amounts of quasi-corrected
imagery from the L-band SAR on SEASAT became available through NOAA that
the general sea ice community could experience firsthand the tantalizing
potential of radar data.

This paper describes a technique for measuring ice displacements from
these SAR images. It is not intended to be a comprehensive analysis of the
performance of the system, but rather a report on some encouraging results.
Measurements are presented of both components of displacement versus a single
herizontal coordinate. This data record is B65 km long and has 417 data
points--roughly one pcint every 2 km. Measurement errors are assessed by
applying the same method to images of land where there are no displacements.
The errors are discussed in terms of the satellite system and the optical
data processing procedure. It appears that SEASAT SAR can provide 3 day
displacements accurate to several kilometers and displacement discontinuities
accurate to one or two hundred meters, With sufficient care, these errors

could be reduced.

THE DATA

SEASAT operated from early July until 10 October 1978, collecting SAR
data over swaths 100 km wide. More than 10° km of arctic data were collected,
half of this over sea ice in the Beaufort, Chuckchi and East Siberian Seas
south of 75°N. Often the sensor was turned on over North America, crossed
the Arctic Ocean and was turned off over Siberia. Hence, there is often land
at both ends of the swath which can be used both to eliminate some errors in

the data and tc assess those errors remaining.
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The novel feature of SAR is that it combines data taken at different
positions along the flight path to synthesize a radar image from an antenna
much larger than actually used--thus providing the high resolution. [See,
for example, Harger, 1970, or Reeves, 1975.] The data are transmitted from
the satellite and atored in digital format. The synthesis of the bulk of
this high resolution data is presently performed by the Jet Propulsion Labora-
tory in Pasadeng by an optical rather than digital process. The 100 km swath
is processed as four adjacent 25 km swaths, The scale is 1:500,000; hence,
two millimeters on the film strip represent a distance of one kilometer. The
resolution of our 1m;ges is about 0.035 km on the ground; 0,07 mm on the film.
The film strips are 70 mm positive transparencies. Not all are of good quality:
ve received one strip with a systematic blurring and elongation of features
and another with double images for each pixel. The technical details of the
SEASAT SAR system are reviewed by Jordan [1980].

These images of sea ice look much like visual photographs. Many familiar
shapes and structures can be seen: leads, floes, and ridges. The same shapes
are clearly recognizable in views of the same ice taken at different times.

The correspondence, however, between radar and visual images is not always
consistent [see, for eximple, b.oyan, 1976]).

To measure displacement, one needs to know the position of a recognizable
ice feature imaged from two successive orbits. Since there was no control on
absolute location, we chose to use orbits thrce days apart (or a multiple of
three) because these orbits are almost identical. We examined in detail orbits
1396, 1439, and 1482 on October 2, 5 and 8, knowing from NOAA VHRR images that
there was ice movement during this period, and wanting the most winter-like
ice conditions., The data reported here are drawn from the latter two orbits.
The ground swath is shown in Figure 1. Furthermore, we looked only at features
roughly in the center of a single 25 km swath, thus avoiding any need to register

the adjacent film strips and also minimizing the effect of slant-range distortion.




PR s L e e

PRsR PEEIS PR

R

i e il T

A=4

MEASUREMENT TECHNIQUE

To identify features in two successive images, and to find their
iritial and subsequent positions in a common coordinate system, we have used
a Bendix Analytical Plotter Model C. This machine normally functions as a
stereographic mapping tool; we have used it as an x,y digitizer with the
crucial feature that two images can be viewed simultaneously. A few guide
lines are drawn on the images to help keep the viewer oriented as he searches
for features. The two images are placed on the two viewing stages of the
plotter, and the stages are independently moved until the two cursors are
located on the same feature in both images. The X,y coordinates of the cursor
positions relative to the viewing stages are then recorded. With this equip-
ment. one can measure about twenty-five data points in an hour,

Since the Bendix plotter is designed to accept 24 cm x 24 cm aerial

photographs, our long film strips had to be analyzed piecemeal in overlapping

segments representing roughly 100 km of ground coverage. To reassemble the
data from the segments into one long data record, two reference'points were
marked in the overlapped regions of each pair of adjacent segments and measured
in both reference frames. Thus, the data from each segment could be trans-
lated into the reference frame of the previous segment, and the segments
reassembled into one long record.

The coordinate system is defined by a combined use of time marks and land.
The time marks are dots spaced along the edges of the film strip. They
define both the inboard and outboard edge of the 25 km ground swath even though
the imagery may extend a bit outside them. They would also define distance
along track except for some glitch in the system. Our x-axis is taken to
run through the inboard time marks on both images. The y-axis is perpendicular

to x through the most westerly land feature on Banks Island.
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Ice displacements (u,v) from initial positions (x,y) are plotted in
Figure 2 versus x only, The data disclose the motion of individual pieces
of ice. Each plece has a solid body rotation and translation; between
pieces are jumps in displacement. ¥Figure 3 illustrates this by showing a
line drawn from the first to the last point on each piece both before and
after the displacement, We see rotations of several degrees, translations
of ten to twenty-five kilometers, and displacement 3umps up to several
kilometers.

These data resolve the discontinuous nature of the field of motion, and
they do so over a great enough distance to show many jumps. Thus we now
have a data set from which to theorize about the structure of the ice dis-
placement field and how the discontinuities in it change the ice cover. The
opening and closing of leads, however, cannot be obtained directly from this
one dimensional slice of a two dimensional displacement field. They require
the component of a displacement jump normal to a line of discontinuity (or
crack or lead), and we have not measured the directions of these lines. 1In
fact, these directions are not well defined on the images.

Plots of the quantities shown in Figure 2 were made to the same scale
as the image to see what correspondence there was between leads and displace-
ment jumps. The leads of this October scene are not the meandering angular
lines of April ice, but are more lacy like the open water surrounding summer
floes. These lacy leads change shape and size with deformation. One might
have expected the big events of deformation to occur where there was some
striking lead-like feature, but this was generally not the case. At all
large deformations we could see changes in leads, but the leads were usually
modest (less than a kilometer)=-not those that stood out for their size (2 to

4 km). Some areas which had many leads and looked ripe for deformation moved
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We tried to find a measurable feature at least every 2 km in x, In
some relatively featureless stretches, this was difficult; in others, we
could have found many data points in 2 km. Often one chooses a feature in
one image but has difficulty finding its counterpart in the other image.
There are two effects. In successive orbits, a moving object is viewed from
different angles from which it has a different appearance to the radar. In
addition, the ice features in question are at the limit of the resolution
and are thus defined by a different grouping of pixels (picture elements) in
successive images. Hence, a small feature prominent in one image may be absent
in the other or distorted enough to make one uncertain where the cursor should
be placed. A somewhat lower magnification than the six power eyepiece in
our Bendix plotter would actually help one identify features. On land,
features were relatively easy to identify and measure, presumably because the
land is stationary and we had chosen to look at nearly identical orbits.
With the cursor on an ice feature in one image, our uncertainty in locating
the feature in the other image is comparable to the resolution * 35 m. This
error pertains to positioning a bright return in the film image. There is
still the question of how closely a bright feature seen in two Images corres-
ponds to one particular ice feature. We have not tested this, but the
positioning error for ice features can only be greater than that for image

features.

OBSERVED DISPLACEMENTS

The 25 km wide strips for the orbits we examined (Figure 1) include 460
km over the Canadian archipelago (x < 0) and 865 km of drifting ice between
x = 285 and x = 1150 km. We made no measurements in the near shore region
(0 < x < 285) where large displacements carried the ice to the extreme edge

or completely out of the second image,
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rigidly. Areas which moved approximately rigidly but did show some relative
displacement {several hundred meters)--like the noisy segment between x = 385
and x = 435 km--do in fact show many sites at which this deformation could
have occurred. This sort of wotion seems consistent with an autumn pack

with many small floes being consolidated into a winter pack with larger pieces.

ERRORS

Our interest is in the accuracy of relative position (x,y), of displacement

(u,v) and of displacementdifferences (Au,Av). We have

(1)

e (w2 — wlY o (w2 _ )
Au (xb xb) (xa xa)

Av

g = ) =2~ yD)
where the subscript identifies the ice particle and the superscript, a time.
Discontinuities in displacement occur for only a few unique pairs of adjacent
particles.

Systematic errors arise from various sources which we will discuss in
turn below. We cannot now eliminate these errors from th~ data; the discussion
is aimed at eliminating them from future measurements of these SAR images.
There is a random zero mean error due to the 35 m resolution of the system.

Its standard deviation is 35 m in (x,y), v2 times this or 50 m in (u,v) and

70 m in (Au,Av). It is seen in Figure 4 as the vertical scatter about the trends.

Along track stretching. The mechanics of the processor can introduce stretching

of up to 1% in the clong track direction. We have compared our images to maps
and find 0.25 to 0.50% stretching. Conservatively then, we take our values

of x to have an error of 0,005 x.
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When two images are cowpared, this stretching may add or partially cancel.
We find that the image on October 8th is compressed about 0.26X relative to
that on the 5th, This is the trend in Figure 4. Since this trend is not
necessarily maintained out over the ice, we do not correct the data. If
we had fixed land points in the Siberian end of our images, we would probably
have enough information to remove or reduce this error. The resulting error
in u is roughly =0.0026 x; at the far end of the strip (x = 1150 km) this
amounts to 3 km. For displacement differences Au, the errors in neighboring

u's effectively cancel.

Acrogss_track drift. Figure 4 shows a nearly constant error in v of -0.0001 x

+0.38 km. As with u, this error cancels when one calculates Av for neighboring
features. The error in v can arise from several effects, two related to the
orbits and the third, to the processor. The two orbits are not quite identi-
cal but cross at a slight angle near their tops. This causes an apparent
across track displacement which grows with distance from the crossing. The
orbital data needed to remove this error are available. The other orbital
contribution to this error is made by the practice of taking satellite alti-
tude to be fixed when it actually is slowly changing along the orbit. Enough
is known about the actual altitude to remove these errors. Occasionally
(perhaps once or twice per orbit) the assumed altitude is corrected, and at
these locations along the orbit, there is an apparent jump in the across track
position. There were no altitude corrections in the images we studied.
Different processor set-ups can introduce an offset in the across track loca-
tion of the orbit on the order of a few hundred meters. This can only be
detected and removed by locating the x-axis with a land point as was done
with the y-axis. Again land points at each end of the pass (in the absence

of altitude corrections) would remove these sources of error.
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Across track distoriion. The relation between the slant range (the distance

from the satellite to a point X,y on the ground) and the across track coordi-
nate y is non-linear. For convenience it is approximated to be linear,
introducing a distortion. The specification for the optically processed

data is that this distortion be no more than 3% of the distanca from the
centerline of a 25 km strip. We have no independent check and so, use this
value. The greatest distance from any of our data points to the centerline
is 6.6 km, with an error of 0.2 km. The 3% systematic error in y causes

a displacement error of 3% of v, and the error in Av is 3% of Av. It would

be a simple matter to correct all y values for the across track error.

DISCUSSiON

Despite some early pessimism about the quality of the SEASAT SAR optical
data, from them one can obtain high quality measurements of ice movement. The
major errors in our measurements can be removed with more work and information,
One needs land in both ends of the ice imagery, orbital parameters (equatorial
crossings), altitude data, and the correct relation between the across track
coordinate and the slant range.

There is no handicap in working with images which have not been digitally
corrected. Coordinat;s of features can be measured from the slightly distorted
images and can be corrected by the same algorithms one would use to correct
the whole image, with considerable saving in processing cost and effort.

This statement may be as true for pattern recognition and area measurements
as it is for displacement measurements. Others have made this point [e.g.
Leberl, et al., 1979], but we repeat it here for emphasis.

There are many ways to look at SAR data. Our approach has been limited

to making observations along a line. Thus, we have avoided making mosaics

and have minimized the problem of mapping different orbits into a common
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coordinate system. Neither have we attempted to establish absolute position
except for illustrating the orbit in Figure 1. Other researchers attempting
a more general treatment will encounter more difficulties than we have. We

are convinced though of the usefulness of these data and the pity of SEASAT's

early failure.

There are more pairs of congruent strips of SAR data between July and

October 1978, Their analysis could be expected to show some dramatic seasonal

changes in the velocity field structure, both in the sizes of rigid pieces and

in the variance of the motion. There does not seem to be enough data to
explore regional differences.

Given that knowledge of ice motion is essential to any study of mass
balance, high resolution radars are a promising source of data on an opera-
tional level, Thelr disadvantage is their high data rate. An alternative
worth studying is collecting redar data only in a small fraction of the nolar
oceans in data windows say 30 km in diameter spaced on a 500 km grid. The
data set would serve the same purpose as an array of buoys. The details of

the motion would not be observed operationally, but their statisties would

be known from a few records of the sort reported here.
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Figure Captions
Figure 1, Approximate ground path of the inboard SAR owath on 2, 5 and 8

October 1978, Solid lines ouciine the portion of the path where
displacement measurements were m-de,

Figure 2, Sea ice displacements between 5 and 8 October 1978:
(upper) along track displacement vs. along track position,
(lower) across track displacement vs. along track position.

Figure 3. Motion of ice pieces from 5 to 8 October 1978. The line segments
represent floes moving rigidly from the lower position tc the
upper position. For instance, the segment AB on 5 October moved
to A’'B' by 8 October.

Figure 4., Apparent displacement over land from 5 to 8 October 1978. Since
the true displacement is zero, these data represent measurement

errors.

ORI TRRTPIT] PP PO P o PSP

ere ndmatinil' s Ml v

P o A dAlah " e um bl S0 b s L

AL

8%+ Lol i s i s 4 54 i




A-13

aup[ino S3uVE] PIIOS

¥201y30§ pue 118

capew 21am SIUaMIINSEIE JuUMIDE[dSTP 213ym yied ayly jo uotrziad ay3

“gL61 2290350 g Pue ¢ $7 uo YIBAMS ¥yS paeoqul Y3 jJo yyed puncad atewyxozddy 1 3141

S3I¥OLI¥Y 3L
1S3IMHLYNON

t

%

prd

| . | o g
-~ -~--c--Z2C L 1]
Q9 -~ (o) G8 0s
ONY 1SH anNv sl
VINOLIIA SHNVE

Gl

We

gl
1 51 ahama il 5 gt 0t o il ]

S~ 2 ,_(k% o




Asl4

Codttn M

TR YT e e R B e T = DT SR PUS e e e ey T

}ooiyioy pue [iey

‘uoriysod yoeay duope *sa Jucmodeidsip jyoeal ssoioe (doeioy) *uoriisod yoeay duoje
“SA Juawade|dS1p 3ydeal QYuoje (doddn) :8L61 49qo3d50 g pue ¢ udam:aq sjuawmodeldsip ad1 eag *C ‘414

(W) X
0021 0GI1 0oat1 GO6 008 00L 003 00S oov 00€E - 002

T v pa T v T R4 Y ¥ ml.

o IJ ., ¥ WI
. . s - /c).- . Vl. <
o f:f/.a. . . ¢ =
f.o\’ 1w
,floo/.. p..f. - ff -/- . l.. g 0 W
™, N 125
N AV \, {v &
" N Z
zf ot 18 ~
.., p..\o.o \/ . m m
s, e 2y - D~ hat

/ b
> Zl

. (M) X
0021 0011 0001 006 Co8 0oL 003 00s 00b 00€

¥ L

v ¥ ¥ v

-
o >
o

NS ey Ay, : a
.. ng

o~ €1

8
L ¥ p1aN]

o




3%2 T T T T T IR 7 Ty VT Y~ . 8 11~y - a— BT T — ey e = e T— - o———rT ——y

¥P01y30§ pue [TeH

wy
~
<
*13qo3on g Aq ,4,vV 03 pPasow 13q03dQ G :

uo gy judmias a3yl ‘adueisul 10j “uofifsod i1addn ayl o3 ucyiysod aamol 3yl wmoiay ATpidia L

Suyaom sa3013j JussSaadax sjuamBas U] YL °g/61 1390320 § 03 G WciJ 83da1d aOF jo UOFIOW °€ *814 w A,

ko

(M) X

0€ES 02S 01S 00S 06¥ 08y oLy 09y oSy 1) 44 0ty 02y ~.

mN| v - L 2 Y 12 2 ) 1 — mNI- .

02- ” 102- .‘

8 —_— = P

st- e T o N 4m~l\l P

Q"- . . — —— ~ <4 oﬁ-w ﬁ, 4

a Y I _,

5- . ‘ {s- .‘

0 0 ]

;

‘A

i 171




A~16

s¥ juawadu[dsip 3nil) ayi aouls

Boviyquy pur | LY

°$10149 JUSWIINSEO JUISIIdol eIep asayl ‘oi1az
*@L61 424903050 § 03 ¢ WoIj PUEB| IdA0 Jjuowodeldsyp Juaaeddy %

(WH) X

‘314

002- 00€e- 00v- 00s-

0 i-

-£
» m..| o
o
Y
-
D
{0 R
X
m
. . =
o€ Tt L . - ¢ - . no . * .o 't . t..ns An.onoouou-.- ol -o ® o *%%0 4 otl l
. " o . . . oo nmt —
-
=

01

I4
{WAM) X ’

0 001- 002- 00€e- 00v- comm«. _
x
10 mw
et e e, , . . o
. 2
LI . - —ll
. ., .. D
i o9
ey =z
« e ., m
® ¢ 4a =
*TTe -, -
R 10° 1~
« o°, u
-.Oo..oo.\ m

N
.
-




APPENDIX B
KINEMATICS OF SEA ICE

by Alan S. Thorndike
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5. KINEMATICS OF SEA ICE

Kinematics is that branch of physical science dealing with motion
itself and not with the causes of the motion. Attention is focused, in
this chapter, on how sea ice moves, The deeper question of why sea ice
moves as it does is addressed in the following chapter on sea ice dynanmics.
For some scientific and practical applications, knowledge of the ice kine-

matics (as opposed to the dynamics) is sufficient. As examples, consider
gouging of the sea floor in shallow water, the transport of natural debris

or pollutants, the impact loads on structures, navigability in icy regions,

pganre i et RO

and the movement of the ice edge. Aside from these applications, the study
of kinematics is a basic step toward understanding the dynamics. é
Figure 1 illustrates the idea that the motion of sea ice is the response
of the ice pack to external forces., To understand the response of the ice
one needs to monitor both the driving forces and the motion. Since we will
discuss only the motion here, there will be the underlying ambiguity of

whether the results inform sbout properties of the ice itself or about the

T T

driving forces. We will see for example that the ice motion is nearly non-
divergent. But we should not conclude on this basis alone that the ice is
an incompressible material. The correct explanation could be that the net
driving force is itself nearly non-divergent. Because of this ambiguity
in the interpretation of kinematic data, it is useful to think of the study
of the kinematics as part and parcel of the broader study of sea ice dynanics.
The fundamental kinematic notion is that all pieces of ice have an
jdentity which is preserved in time. If we identify a piece of ice say ty
meking & small mark on the ice surface at position X at time o , the assunrtion
is that at some later time ¥ , the piece of ice as identified by that mark will
be at & position X . This defines the position function 2(t,X) with z(o,X) =X .
We do not mean to imply by this that ice floes retain their identity indefi-
nitely, only that it is possible to track individual points. Two points
originating on the seme ice floe may very well wander apart in time, but we
assume we could keep track of them.
There are difficulties with the notion of a position function. It is
natural to consider the space domain to be the two dimensional surface of
the Arctic Ocean, uyx. At tv0 there will generally be some points inX
which are not covered by ice, so x(’c,X) is not defined for some X‘xo
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Further, ice 1s always being created and destroyed thermodynamically, sc
the position function x(*,X) is only defined for an interval of time.
Finally, the idea that the small mark retains its identity is question.
able. This is a common problem in the definition of the motion of a
turbulent fluid. After a time the marked fluid has mixed with tlr: unmarked
and it is no longer possible to assign a position to the mark. CEomething
of the same sort happens with sea ice. Despite these shortcomings, the
notion of a position fﬁnction is the best we have, Furthermore this notion
corresponds exactly with most of the observations we have.
the term trajectory for the function z(%,X) where X is held constant. The

initial position X serves to label ice particles and we refer to the

trajectory z(f,X) of the particle

We will use

5.1 Observations
The most common observations of ice motion are of trajectories of ice

particles consisting of a sequence of measurements (tk.f;) s +°h N ynere

1" = 1({s.x) + £

The measurement error is represented by €, .
In passing we mention that other kinds of measurements of ice motion

have been made. Hunkins (1967) and McPhee (1978) for instance inferred the

ice velocity using current meters suspended from the ice into what they

assumed to be essentially a static ocean. These data were used to study

motion on the time scales of hours. An attempt to study motions on much
shorter time scales using accelerometers was made by Craig (1972).
Many techniques have been used to measure ice trajectories. Thecse

are summarized in Table I. Each technigue has its good and bad feslures.

Over the past decade most data have been obtained by satellite positionine
Suppose a stable frequency ‘f is trans~

vhich works somevhat as follows.
The signal received at the rapidly moving

mitted by a device on the ice.
satellite will have a frequency f'which has been shifted by the Deppler

effect: £: £ +Af . The Doppler shift 4f is related to the rate of
change of distance between the device on the ice and the satellite

Af~ ,Ti‘"ut - Xl The received frequency £ is measured at several
times. If the satellite coordinates are known at these times, then each
measurement produces an equation with unknowns 7! and X, . Generally
several measurements are made during the 10 to 20 minutes it takes for the
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satellite to pass by. The several equations are solved simultaneously for
,c and 2,, . Precice positioning requires a stable transmit frequency,
precise measurement of the received frequency, and precise knowledge of the
satellite coordinates. With care, errors can be controlled to the order of
tens of meters, #s in the best uses of the Navy Navigation Satellite System.

Satellite systems which serve primarily to relay data from automatic
data platforms (or buoys) to data processing centers also determine the
location of the transmitting data platform, using the same Dopnler positioning
principle. The ARGOS system currently on the NOAA-B satellite can relay
data from up to 30 sensors and determine platform locations to an accuracy
of a few hundred meters about ten times per day. Fully automatic platfornms
cost in the neighborhood of $6,000 with additional costs depending on the
desired sensors.

Satellite imaging systems can also be used to measure ice motions, pro-
vided that some features on the ice can be identified in a sequence of images.
Because of their all season and all weather capability and good resolution,
imaging radar systems will probebly be best. The basic angular resolution
of these systems is approximately the ratio of the wavelength of the radar
signal to the diameter of the antenna. To achieve arn angular resolution of
10-5 (10 meters at a range of 1,000 kilometers) with a wavelength of 25 cm
(1.2 GHz) requires an antenna 25 km in diameter. Although such large antennas
cannot be constructed in space, it is possible to synthesize large antennas
by using data from several points along the satellite's orbit. The determi-
miblons of the geographical position of an ice feature with the SEASAT data
contained errors of up to 3 kilometers (see Hall and Rothrock, 1981). Unless
these errors can be reduced the data asre not particularly valuable for
measuring the displacements over intervals of a few days or iess. However,
the errors are highly correlated in space and are essentially eliminated in
estimates of the spatial variability of the ice motion.

The attractive feature of imaging radar systems is their potential to
sample densely in space. Hall and Rothrock's work suggests that it will be
possible to track roughly one feature per square kilometer, which will
resolve most of the spatial structure of the field of motion. Techniques
for extracting data from the images or frcm the raw data are still rather
primitive. No doubt satisfactory automated techniques for identifying and
tracking features will be developed when the need arises. At present there
is no imaging radar system in space. Planning is underway for a system to
be in operation perhaps by 1985.
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2:1.1, Sources of data

Beset ships and Hastings,
drifting stations
before 1970

5.2 The genersl circulation

Experiment Reference
T-3 Hunkins et al., 1971

1971

AIDJEX 1972 AIDJEX Staff, 1972
7 AIDJEX Thorndike and Cheung,
f 1975-76
1976-TT buoys Thorndike and Cheung,
1979 buoys Thorndike and Colony,
1980 vuoys Thorndike and Colony,
Fram I, 1979 Hunkins et al., 1979
LOREX 79 Popelar et al., 1981

1977

1977

1980

1981

The earliest ice motion data are the trajectories of ships beset in
the ice. These are followed by the trajectories of numerous Soviet and U.S,
drifting research stations, and more recently by the trajectories of auto-
matic data buoys. The following list of data sources is by no means complete.

Description

Monthly positions May 19€2-
December 1970

A chart showing most prior
trajectories, one point per
month; includes: Fram, Jeanette,
Maud, Sadko, Sedov, Tegetitoff,
British Trans-arctic Ext.,
Alpha, Arlis I, Arlis 1I,
Charlie, North Pole 1-20, T-3,

100 kn triangle, Beaufort Sea,
March and April 1972.

Manned camp positions and
velocities tabulated at € hr
intervals, daily buoy positions.

Tabulated daily positions of
Beaufort Sea buoys.

Tabulated daily positions,

25 buoys, analyses of surface
pressure plotted daily.

As sabove.

March-May 1979; 8L°N, 9°W

Three stations, 100 kn spacing
April, May 1979; 88°-90°IN.

The main features of the long term circulation, Figure 2, are the clock-
wise circulation in the Beaufort Sea--and the motion of ice from the Siberian

j coasts across the North Pole and through the Greenland-Spitsbergen passage.

Time honored nomenclature for these features are the Beaufort Gyre and the

Transpolar Drift Stream. Some handy numbers for these long term features av.:

center of Beaufort

Gyre: B80°N, 155°w,
Alaska and the North Pole

half way between Pt. Barrow,
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time to make 1 circuit: 5 years
time to traverse Transpolar Drift Stream: 3 years
area flux through Greenland-Spitsbergen Passage:
300 km?/day or about 20% of the area of the basin per year.
This pattern of motion exists only as an average over several years.
On shorter time scales there are departures from the long term pattern. Con-
sider for'example the trajectories plotted in figure ¥ for the year 1979 and
figure 4 for 1980. The trajectories are characteristically meandering and
convoluted showing that on daily and monthly time scales the ice motion
differs markedly from the long term mean. Notice the major anomaly which
occurred in the summer of 1980 when the motion of several buoys for several
months was in the opposite sense from the long term mean. These departures
of the actual moticn from the long term pattern in most cases represent the
response of the ice to the passage of atmospheric systems.
If we ignore the forces and examine only the ice motion, the departures
from the mean circulation appear aperiodic and chaotic. The departures can
be thought of as random but they are not without structure. Our objective

row is to clarify this structure.

5.3 Ice velocity
The ice velocity field can be defined by the relationship
«(48,X) - x(0X)
]

u(%,'l:) = lw
Lad

Here the particle label X plays no role.

This definition is meaningful only if the limit exists. From a practical
point of view it is useful only if the limit exists @gnd is approached when
the interval R decreases to the time interval T between observations.

In figure 5§ several sets of observations of ice motion are plotted,
showing the variation of one coordinate of position versus time. Successive
data sets divide the sampling interval ¥ by 15 and improve space resolution
by the same factor, giving a sequence of closer and closer perspectives on
the motion. By constructing velocity estimates, w(t)r [*(i*k"x) = x(4,.X)]/k
for k decreasing to 1, one can examine the limiting process. In the first

tvo figures of the sequence, W, continues to change appreciably for small k .

In the last two figures, “k(*) at most times 1 becomes almost indevendent
of k for small k , implying that on these time scales, T £ 15 minutes,

the ice indeed possesses a velocity.
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Convergence of [l(*‘t.x) - "(**X)J/‘ to a definite 1limit implies that
the increment mfte1,X) - w(t,X) iS proportional to T for small T .
For random processes, & useful condition for convergence is mean squared
convergence in vhich the variance of the increment becomes proportional
to T} for small T . This can be readily tested for ice trajectories by
plotting E(xtten.X) -2, )" versus T on a log-log plot, as is done in
figure { . The process is differentiable if the graph has slope of 2 for
small T .

From a practical point of view the process ceases to be differentiatle
at measuremen intervals T for which the slope of the graph departs appre-
ciably from 2, .The evidence in figures 5 and § implies that the ice does

have a velocity and that it can be resolved with e sampling interval of
about three hours.
Time averaged velocities can be defined without reference to the limit-

ing process. Let w(tT, *) be the time averaged velocity at t .
t+¥2
wi(s,x)ds .

- - ( 'T'x) : -
T - R s R T

This quantity u()‘.T.K) and its properties depend on the duration T of the

time averaging. For example, the variance of u(t,T,x) will in general
be less than the variance of u.('t.z.) because the 7 average has suorrescsed
contributions to the variance on shorter time scales. Also, from a dynamical
point of view, the equations which u(i,7:x) satisfies should involve 7 as
4 parameter, Different physical processes may be responsible for determining
wlt, T, ) for different values of 7.
Typical ice velocities range from O to 20 cm sec”!., An extreme velocity

of 140 cm sec™?

has been observed, Two histograms of ice speed are shown in
figure 7 , one corresponding to a full year of observations, the other
restricted to summer observations. The winter 3data contained several periods

of essentially zero motion. During the summer the ice was never observed to

stop.

In the following pages particular impirtance is attached to the time
and space variablility of the ice motion. We will often refer to the variance
of velocity, E((u.":)‘“\' 'V)‘)"f‘. This guantity has been evaluated from many
observations; it varies appreciably with season and with location. TableXl
gives estimates of the velocity variance for eech of the buoys shown in figure 3.
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Buoy ID

1901
1902
1903
] 1905
é 1906
E; 1907

1908
| 1909
“ 1911
F 1913
§ 191k
1 1915
1916
1918
1917
1920
1923
1924
1925
1926
1927

e s

TABLE II

1979 data, 1 point per day

velocity variance number of data points

59 cm? sec ¢
48
50
210
81
37
174
38
19
8k
83
172
57
35
29
54
63
167
67
168
62

B~-6a

3h2
295
28k
231
299
229

61
267

62
b
282

31
172
283
219
293
302

T2
2Bo

59
311
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3V tipe series

The ice velocities deduced from trajectories should be interpreted
from the Lagrangian point of viev since the measurements are made following
the material particle. If many trajectories are measured simultaneously
it is possidble to obtain by interpolation velocity time series at fixed
Fulerian points, Although the Lagrangian description is more directly
measurable, it has the drawback of sampling both the time and space varia-
tions in velocity. The differences between the lLagrangisn and Eulerian
points of view is not of great practical importance in the motion of sea
ice, This is because most of the variability in the ice motion is driven
by the wind, and the space patterns in the wind field move across the basin
so much faster than the ice moves, that all points, Lagrangian or Eulerian,
experience essentially identical stochastic forcing. Consequently, Lagrangian
and Eulerian time series of sea ice velocities look just about the same,

A typical velocity time series, taken from an ice station trajectory,

-1, and it may show

say, will have a mean velocity usually less than 3 cm sec
a trend. When these effects are removed from the time series what remains
are the fluctuations with time scales longer than the sampling interval
and shorter than the length of record 7 . The AIDJEX position data for
instance, serve to resolve fluctuations on time scales from a few hours
up to a few months, ( # 1 hour, 7# 1 year). Over this range of time
scales the ice velocity has a power spectral density as sketched in figure 8 .
The pover spectral density is plotted for positive and negative freguen-
cies corresponding to counter-clockwise and clockwise rotations of the
velocity vector. At the end of this section an algorithm is given for cal-
culating the spectra of vector time series. We interpret the velocity
vector time series u(t, #) as a complex time series with the Fourier

decomposition

et ceot
u.({:az) . / a(w) € o,

»
The power spectral density is the real function S(u) : alw) o (w) , defined
in the frequency range - ,_l.-,_ <w< 3‘:: .

The integral of the spectral density over this frequency range is the

variance %f » and the integral over any frequency band is the part
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of the total variance contributed by fluctuations with frequencies in that
band. A useful way to summarize the information contained in the spectrunm
iz to state the fraction of the total variance coming from frequencies
greater than a certain value. We find:

Table IXI Fraction of total variance from frequencies exceeding

frequency: 1 cycle per month 2 4 15 30 60
period: 1 month 2 weeks 1 week 2 days 1 day 12 hours
58% Ls% 344 12% ™ 37

The equation of motion for sea ice balances the ice acceleration against

air stress, water stress, pressure gradient forces due to the sloping sea

surface, and internal ice stress gradients. While it is not the purpose
here to examine the ice dynamics, it is useful to relate features of the

ice velocity spectrum to these driving forces. In the central basin about

75% of the variance of the ice velocity can be explained by the local geo-

P T AR e TR TR "

strophic wind (Thorndike and Colony, 1981). 1In fact, the ice velocity fluctua-
tions are roughly proportional to the local wind fluctuations. This implies
that the spectra of the ice velocity and of the wind should have avproximately

{4 the same shapes (see figure 7).

%; The water stress depends on the difference in velocity between the ice
end the upper ocean., If the ocean is at res* the water stress is simply a
drag opposing the ice velocity and its only effect is to reduce the ice

response near the inertial frequency. ——— e

If the ocean is in motion, the ice will be carried along with it, and should
acquire spectral traits similar to those of the ocean. Unfortunately the

spectral signature of motion in the Arctic Ocean is poorly known. The long

term circulation of the upper ocean appears to be similar to that of the ice,
with a clockwise circulation in the Beaufort Sea and & transpolar current
flowing from Siberia through the Greenland-Spitsbergen passage. It probably

is not productive to ask whether the ice drives the long term ocean circula-

DR Db el
——t e il D R

tion or vice versa because, in the long term, the ice should be thought of

as part of the upper ocean. In any case the long term ocean behavior does
not affect the spectrum we are considering since we have subtracted out the

f long term mean velocity.
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Fluctuations in ocean currents on shorter time scales have been observed
but it is not yet possidle to say how great their effect on the ice velocity
may be., Briefly they are:

1. Nonthly variations are apparent in the currents deduced from wind and

ice motion obaervations by Thorndike and Colony, 1981.

2. Manley's (1981) study of .subsurface eddies during AIDJEX described

nunerous features with velocities of about 50 cm sec". & length scale of

10 kilometers, and a depth of 50-200 meters. He found no expression of

these structures in the ice motion.

3. Inertisl oscillations. The balance between the ice acceleration and

the Coriolis force leads to oscillatory ice motion with a period which varies
rom 12.77 hours at 70°N to 12 hours at 30°N. Inertial motions are always

clockwise--hence the negative value for the frequency--in the Northern Hemis-

phere because the Coriolis force always accelerates the velocity to the right.

Inertial motions insea ice were first described by Hunkins (1967) and have
received subsequent study by McPhee (1979) and Colony and Thorndike (1980).
The amplitudes can reach 0.20 m sec™! during summer when the ice pack is
comparatively loose, Their effect on the summer ice velocity spectrum is
striking (see figure®).

4, Tides. Tidal currents in the central basin are small because of the

great depth. Theoretical estimates are in the range of l1-2 cm sec” !,

Over
the shallow continental shelves the amplitudes are predicted to be at least
an order of magnitude greater (Kowalik and Untersteiner, 197¢ ). These
theoretical estimates are for the lunar semi-diurnal tide. Evidence from
tide gauges around the basin summarized by Sverdrup (1926) imply that the
lunar semi-diurnal (period 12.47 hr) and the solar semi-diurnal (12 hr) tides
are the dominant tidal constituents in the Arctic Ocean.

The prediction of a large amplitude of the tidal current over the shelf
is confirmed by Sverdrup's observations from the Maud; Nansen may
also have observed tidal motion in the ice pack surrounding the Fram. Because
the tidal and inertial periods are so close it may be difficult to diagnose
observed motions correctly. Nevertheless there are several differences
between the two kinds of motions which can sometimes be used to distinguish
them. First the tidal vector traces out an ellipse during one period. An
ellipse can be viewed as the sum of a clockwise circle and counter-clockwise
circle. Thus, unless the tidal ellipse should happen to be exactly a
clockvise circle, it should have some expression on the counter-clockwise
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side of the spectrum. Inertial motion is strictly clockwise. Second, at
a fixed point, tidal motions should have a fixed phase. Inertial motion
on tne other hand, acquires a new phase every time the ice recelves a
sudden irpulse of momentum. Third, the phuse of tidal motion should vary
smoothly and slovwly in space. Inertial motions at different points may
have no fixed phase relationships.

The motion descrided by Sverdrup can hardly be mistaken for inertial
motion. The smooth variations in phase as the Maud moved from Wrangel Island to
the New Siverian lslands, and the clearly ellirtical cycle described by the
measured velocity vector are not compatidle with inertial motionms,

Most ice trajectories which have been analyzed inthewestern literature
have been over the deep basin where the tidal motion is small. Careful obser-
4 vations and analysis would be required to detect a tid.. component of order
1 em sec™! since it would be mixed with an inertial component which is often
much larger and with a rich spectrum of other types of motions.,

The Soviet literature contains many references to tidel mstion in sea
ice. Doronin and Khiesin (1977) and Zubov (19L3) each devote several vages
to the subject.

An important conseqguence of the tidal motion is the associated cycle
of convergence and divergence caused by the difference in phase of the tidal
cycle at different points. Periodic opening and closing of the ice in the
shallov seas has an effect on the heat exchange between the atmnosphere and
the ocean and on the rate of ice production. The theoretical calcwlations
of Kowalik and Untersteiner indicate maximum divergence rates in the shallow
seas exceeding 10~®sec™! which is enough to produce one percent opening
during the tidal cycle. Their theoretical estimates of the divergence rate

associated with tides over the deep ocean are three orders of magnitude smaller.

Calculation of cross power spectral density for two two-dimensional veltor
time series,

Given: two discrete complex time series 4, V,, +¢/, .,/ vith sampling
interval 7 .

Gtep 1. Select M, the number of lags.

Step 2. Remove the mean and trend from each timc series.

Btep 3. Compute crossﬂeovnrinnces

1

| v . _

v Y ke oh LM
; 5°
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é N Jg/-& ur!V‘ l‘ ) *, ) ..
k. :
i: B-10 :

ST o e : ' : o ‘ ““‘“““‘“T"?Eﬂﬂiillll.éiii



e e A wthia

Step 4. Define spectral window
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Step 5. Calculate spectrum S and frequency o

M ~27R kT
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5.3.2 Velocity correlations in time.

An alternative characterization of a randor function is its autocorre-

lation function., The discussion in the previous section of the power spectral

density of the time function \LG) at a fixed or moving point could have been
given in terms of the autocorrelation function

e S BT T S o e B et i ot Ly st

E ulte) u.‘('t) . D o) RITH
R = —F om w*(b) ¥ b

AT T

T

The two functions Ot and R(7) are Fourier transforms of each other and
Y therefore coftain equivalent information.
depends on the application.

Which description is the.more useful
The spectrum is useful for distinguishing rhysical
processes with distinct characteristic frequencies; for example separating

the free inertisl oscillations from the wind forced motion. On the other )

hand the autocorrelation function is more useful for questions related to

prediction or experiment design. For example the question: "How well can

tomorrow's ice velocity be predicted on the basis of today's velocity," has ?

an ansver involving the autocorrelation function R(1) evaluated at 7 = 1 day. l4
The sutocorrelation function is complex. Its real part contains informa-

tion about the lagged correlations of the X component of veloc.

v with itself
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and the ), component with itself, The imaginary part has information about

the lagged correlations between the X and a velocity components, If the
velocity of a piece of ice undergoing an inertial oscillation has a positive
X component at a certain time, it will have a negative § component three
hours later. The imaginary part of the correlation should have negative
peaks at 3 hours, 15 hours, etc.

The autocorrelation function for the velocity time series at the AIDJEX
ice station Caribou is shown in figure # . The autocorrelation function
estimated by the 1979 buoy data for the central basin is shown in figure Z,
The real part of the correlation falls to about 0.7 after one day, 0.4 after
two days, and decreases slowly at longer lagé. The large correlation et lag
one day indicates that persistence (the forecast strategy which predicts
that the future will be the same as the present) will have some skill for
one day forecasts.

As expected the autocorrelation from Caribou has negative peaks in the
imaginary part at 3 hours, 15 nours, etc. Generally though the imaginary
pert is small. If the inertiaml motions are not of interest in a.particular
application, the imaginary part of the autocorrelation function can safely
be ignored. This is equivalent to treating the two velocity components as

independent time series.

5.3.2.1 Application of the time autororrelation function.

It is desired to estimate the ice velocity w at time + given observa-
tions # at times 'E’- »4*LsN . Suppose the observations have zero
mean random errors &;» z —u.('l'}') which have covariance

Eé)e‘; = o &n .

The delta function expresses the independence of errors at different tiues.
Finally suppose the errors are independent of the actual velocities. Choose
an estimator ’U.\ which is a linear sum of the observations.

12 = ;;‘va}i}

It 15 desired to find the complex constants ©% which give the best estimate

% in the sense that Fito%n)= E(ﬁ-u}(ﬁ-u)" is minimized. This is
accomplished by differentiating F with respect to the real and imaginary
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parts of each 0(,- and equating to zero. The result is the system of
complex equations for the unknowns «,,.-:,%%y*

f
I «Eeyt - (Egw)
/
A further reduction is achieved by noting that
: ¢ ¢
E!)z" . Euju: + vzgal and E 2w = Eulu .

Use of the matrix notation Z ¢ [z)-] , A {"ﬂ , M» {€ ‘)"1‘} , P ’{Efx“’]
gives the compact expressions
T
lll\. = AZ kn) (/)
MPA =

Furthermore the estimation error is
1T 8 .
F=yg2-FM F . 73

With these two expressions we can answer a number of practical protlems.
1. What sampling rate is required to insure good two point interpolation

in time? For given sampling interval ¥ and measurement error variance o2,
we write eq. / as

gt f’R(‘t)‘ o, 4‘((—}) *

I AN U

The solutions for the °() , Which in this case are complex conjugates for
reasons of symmetry, and for F are sketched in figure /§. The solution
technique extends trivially to interpolation involving more points.

The optimal choice of the weight$ &, and %; is not =, %, s/2 . fThis

linear interpolation between the two data points is the most natural schene,
and it is quite good for small T , and small V‘/Q" , but it is not the
optimal interpolation. Especially at large T , a smaller error variance

is achieved by giving less weight to the observations. For very large T
the optimal estimate is simply Uso , (o ".'°) since, in this case the

tvo observations are so removed in time as to have no correlation with

the desired velocity.
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The measurement error O affects °$ and F slightly. The dependence
of F on the sampling interval T is quite strong. It appears that if
one needs to know each velocity component to 2 3 cm sec” , F =Eel <&/ =
18 em sec", a8 sampling interval of about six hours is required even with
perfect measurements.

2. What errors are expected in forecasts based only on the present velocity?

_ OM
7 e

Here we obtain

()

_ RmRn*
el e

The forecast skill is plotted for several values of initial error in figure 14.
The prediction error grows with time, approaching the velocity variance
32 for large 7 . From the sketch we see that an optimal 3 hour forecest
capiures about 75% of the velocity variance, an optimal one day forecast
captures about 35% of the variance.
The velocity was assumed toc have zero mean in this analysis and in
constructing the autocorrelation function (figures//Z) the long term mean
was first removed from the data., In an actual application to a region where

the mean is known the best forecast would be

QL:w +xE-®)

Note that the best forecast is not simple persistence (o< = 1), For long
(od=0) , .
forecasts, the best estimate is the mean, as equation « correctly indicales.

5.3.2.1. Acceleration

The time autocorrelation function for velocity, figures 1] and 11, behave
like /- 7/C for small Z . This implies that the velocity is not time
differentiable in the mean square sense. Attempts to measure accelerations

precisely by sampling over shorter and shorter time intervals may merely
result in larger and larger estimates of acceleration. Of course, time

averaged accelerations exist and have finite variance.

o ewr{d [wieer)-u]} = 285 (1- A7)

p
vhich for small / 4s 2}‘/‘?7— with €& /0%,
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It is frequently claimed that the inertisl forces due to acceleration
of the ice are small compared to other forces acting on the ice. To support

PP P

this claim a typical average acceleration 03 is compared for instance, to a

. -‘ s C ;

i typical value of the Coriolis acceleration +0x » 10 3¢’ e 10 tam el . 1

j% Using the above estimate for Q; , and taking *f- 100 et seC » We find 2

; O < -F T provided T ) 2710% sec « Thus, roughly a half hour time ;
i

average is required to bring the acceleration down to the level of other

o L

terms in the momentum balance.

5.3.3 Velocity correlations in space

bl am el ok ) At vt - 1

In earlier sections the emphasié has been on the structure of the comrlex
function W of the real argument ¢ , at a fixed or moving point. In this

section, the emphasis is on W as a function of position for fixed time.

EiARCA L il s i Kl iniln

Certain results are more easily expressed if W and X are regarded as two

dirensional vectors rather than as complex numbers. The autocorrelation
function

AR L bt R

v sz,}u‘ZJ E “(:')V(Z")\ A

Euwizvix) E v(l.)v(g,)//

e 8l n

is a 2 x 2 matrix involving possibly four different functions, whereas thre
time autocorrelation function involves Just two.

The structure of the spatial autocorrelation matrix for sea ice veloci-

i

ties reveals some of the proverties of the velocity field. To establish

the basic ideas we fir<t determine the structure of the autocorrelation matrix
for a homogeneous, isotropic, two dimensional velocity field, borrowing from
Kolmogroff's (1941) classic discussion of three dimensional turbulence.

A random field is said to be homogeneous if its statistical properties
are invariant under a translation of coordinates, and isotroric if they are

invariant under rotations and reflections of coordinates. 1In particular the

autocorrelation matrix for a homegeneous isotropic field must satisfy
: R(zunzt>’ R(“l"'&,&l*&) for mysimd

$R(z ) = Euln)dln) = £ Mu(z)[Me 2]

for any orthonormal matrix M. Multiplication by an orthonormal matrix

B-15,
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accomplishes an arbitrary rotation or reflection of coordinates. RNote

that the change of coordinates is applied toboth the position and the
velocity vectors. These definitions make precise the notions that the
statistics do not depend on position or direction. By choosing the trans-
lation vector Q& or the rotation and reflection matrix ™M suitably, ve can
see how these definitions of homogeneity and isotropy constrain the form of

the autocorrelation matrix.
First, R! %, z,) depends only on the vector difference 2,-% . To

see this, take Q = -% . Note that this does not imply that K depends only

on the distance n&; - %0,
Second, R is symmetric. This requires using g:"g, » Ms-I ana

P to obtain this sequence of equalities:

/
E-zc.(z,) viz,) = £ u../_g)v(a,—z,) = [/—u(-g))'l/(f, -?_{;)) = ‘[“(f‘) viz,) .
Third, Lute, o'v(x,0) =6 . Hére use the reflection invariance in the

definition of isotropy by teking
e (13)
c -/

which changes the sign of the J axis. Then

[ula,o)v(;r,o) = [u(o‘,-o)[-v(x,-o)] = ~Luoyvixne)

which is only true when £wte,0)v(#e) *0O-

Consequently the autocorreiation function evaluated at %, =(6 o) , A (¥, o/‘,

has the form

Eueoun) o B o ). g
R{w,(r0) = :."—,/ | = Bl
\ ° E v(o,0) vITie) ° G.L(?)

involving only two function of distance. B” (4) is the correlation between

the components of velocity parallel to the line Joining two points separated
by a distance T. G_L(-r) is the correlation betwveen the components of

velocity perpendicular to that line.
2
More generally if X, and 7£. are arbitrary points with f't(z.-h)z’(a.-g:),

eos9=(1.-ﬂ)/f and ;\‘..B--(a;-p.)/'r » then
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Then K(f_u{s)' ""‘Fgfz.)v_uv(ﬁ.) » L EAE(T)(AE({‘))T « A B(")AT or

’l

tnd G, lv) + 52 Bul7) cnd 3ind (By(n) - Q7))

“)

e v 68y (1) - Gulw) st By (v) + cretd Cifn)

which is the general form for the autocorrelation matrix for a hcmogenecus,
isotropic two dimensional velocity field. It involves two functions Bn
and ’B.L which we will estimate below from observations. Further it involves

the separation o and the orientation 8 of the two points {- and 7, at

which the autocorrelation is being evaluated. It may seem strange that 6

enters the statistics for an isotrepic field. The condition of isotropy
does not imply that fu(oo0w(f,e) equals fute,0)w(o,7) hovever. A
rotation of coordinates affects both the velocity and the position vectors.
A valid statement is L uso)u(r,e) = Fv(o,0)v(c,¥) See figure 15,
There is another constraint on the spatial correlation function. Let
u, = (ue, V) be the velocities at any set of points X; , s, ,N and let
¥ be arbitrary real numbers. Then the linear sum

S~ g L '7'-.\/‘_
V37

has a variance which can be expressed in terms of R . The added constraint
is that var (s))o for all choices of #;, ¥, a+d# . This requires that
the matrix consisting of the correlationsof the velocity component at any
set of points {zjmust be positive definite (all positive eigenvalues), and
is equivalent to the condition that the two dimensional spatial power spectrum
of velocity be positive for all pairs of wave numbers (ﬂx.ﬂ,) .

Contradictions can arise if correlation functions are used which do not

satisfy this constraint. For example, suppose we wish to consider a velocity

field for which B,(e)= |, By(L) =09 ond Gy(2L): 0-5 . The
attempt to evaluate the variance of 8= w(5s) ~/Ju(l,0)+0.¥u(2l,p) in terms
of these correlations produces a negative result. Since variance is intrinsi-

cally positive, wve must conclude that no velocity field could have the presumed

correlations..
B-17
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As an evample of an analytical form for R vhich satisfies the positive
definite constraint and bears some resemblance to reaiity, define

v, )b oy - ()
G~ - f-(/A) , B (""(i’))e(” , A ~lookn

This example was constructed by taking a stream function I with the posi-

tive definite correlation function Rir): é'”‘ + The corresponding power

_rlae —'AY t t
spectrum is the Hankel transform of e T/ . This is #Ae® » o(c.o"' '“;""p),

which is always positive, Now define velocity components w: et .

[AXY

: ot/ :-.'_-?R") “rp): - OFr)
(V] 0I/gx a-nd deduce B"(*) T W and Q;’f)- -‘cr: .

5.3.3.1 Estimates of the autocorrelation functions.
In order to estimate the autocorrelation matrix, simultaneous velocity

observations are required at pairs of points separated by distances renzinc
from roughly 1 to JOs kilometers., We present data from the 1979 buoy rro=-
gram and from AIDJEX which define the functions B, ana 13_;_ only for
distances exceeding 100 kilometers. The 1979 data were first interpolated
to give velocity estimates at a uniform grid in space and time,
o ¢/ 4 Ne , JEL Ny A N
ik “(,(‘7Jlth) 4,.Aaswo)n,4 ay , 2o N, Yth 0Ty p e
The mean velocity over all points {,)ok was removed. Then for lags R,wx,-n

the lagged correlations were found using

N=d Ny-w Np-w
o i 55 i
l,w,u N N’N* ~.:d, j’v,kov ~v)k

N T TR 1Y

For these calculations N, = 7, I\é = s, and N, = 200. The results are sketched
in figure X for the lags Itl, sveey 1y W= 1 = 0, and £=n=o,

m = 1,000, 4. The results show that F we,oulre) and E vie,eo vie,m)
are similar functions of T , and that [ v(e,0)u(v,¢), Eufeetvie,r),
E wis,0)v(r,0) , and Evis,0)uce,r) are all small. These observations

are roughly consistent with the assumption that the field is homogeneous
and isotropic. We will proceed then on the assumption, supported by these
"ata, that the ice has a homogeneous, isotropic velocity field with the
functions B, and B, empirically determined from figure /6 .

Correlations for the AIDJEX data were constructed by choosing two of
the ice camps, resolving their velocities into components parallel and perven-
dicular to the line joining the camps, and correlating these components.
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These correlations are also plotted in figure 1.

2.3.3.2 Applications of the space correlation.

The spatial sutocorrelation function is the basis for sound experiment
design and data processing. For instance, suppose observations of velocity u,

T S R

are made at [N points 2 with independent zero mean errors having vari-

ance 0® ., Estimates of velocity are to be made at arbitrary points X using

these observations., What is the maximum estimation error? We use the tools
developed earlier. To estimate the w component of velocity at X , we use i
.} the cbservations 4,, -, 4, and construct the matrices |
E! Ruy, +o*  Ruy, E Ruue s Ruvy /" Ruw, ]
!_] ' Rv.u, Rvv, + T, Rv,uy A, Rw v, ;
- Ru,u, R u;v,w ' Ruu, ]‘
.' : / o, R w uy
Ruv, i
Ry, u, C N A y ;

vhore Ru‘vj s E wlzi)vix;) etc. as given by Eq. §* . The esti-

mation error variance is given by Eq. £ . Figure /7 shows how the maximum ’

estimation error depends on the separation between measurement stations and
on the measurement accuracy. Tr ~urve labelled 07§‘=O refers t0 the idealized
condition in which the measurement errors are zero. Thus it represents the
interpolation error which is due to the intrinsic spatial variability of the

velocity field.

The standard deviation of the ice velocity itself is about 3-10 em sec™’ .
A reasonable observational goal is to keep the interpolstion errors below 2 or
3 cm sec-'. This can be achieved if the raw measurements of velocity are
good to about 3 cm sec-' and the grid spacing is about 400 km. At larger
grid spacings the interpolation accuracy deteriorates rapidly.

5.4 Deformation
The differences in velocity from place to place are responsible for the

characteristic morphology of the ice. When the velocity difference between %
neighboring pieces of ice is such that they tend to move apart, a lead forms
and widens exposing the ocean surface to the atmosphere., During the winter,

Bl ice growth is rapid over open leads. If the motion changes--perhaps because
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of a change in the winds--30 that these pieces of ice move toward each ot '=r,
the open lead will close, and any new ice which formed there will need to
rearrange itself to occupy a smaller area, Typical mechanisas for this
Tearrangement are rafting where one part of the new ice sheet overrides the
other, and ridging \here the ice is crushed inteo pieces which pile into
ridges rising a meter or two abvove and sometimes many meters below the sur-
rounding ice. Ridging and rafting are not restricted to thinice. If the
closing motion continues, the original pieces of ice come in contact and

one may override the other or, by grinding together, pieces may break off
and pile up and down to form a ridge. The essential ideas here are that

the ice accommodates divergent motion by increasing the area of open water
rather than by stretching and thinning. It accommodates convergent moticn
by reducing the area of open water and by ridging and rafting. These procecses
link the morphology of the ice, characterized by such features as floes,
ridges, and leads, to the spatial differences in the ice velocity. By
studying the spatial variations in velocity we may be able to understani
better why the ice pack has the form it dccs,

There is a second reason for studying the deformation of sea ice. As
the ice pack deforms, stresses develop within it which tend to oppose the
deformation. These stresses figure into the local bdalance of forces and
therefore affect the motion of the ice. To be more precise, the balance
of forces equation contains terms of the form 'ng,/Dx; where O,
is the stress tensor. The stresses are in turn related to the ice moticn by

a constitutive law
stress = F(deformation).

One of the motivations for AIDJEX was to investigate the function F fron
a theoretical point of view and by using observations of the deformation and
indirect estimates of the stress (see Rothrock et al., 1980).

The concepts which have been applied to the study of the spatial varia-
tions in ice velocity are those appropriate to the analysis of the deformation
of a continuum. The fundamental concepts are the partial derivatives of
ui’b%»t) and Vlﬁoa,f with respect to x and ¥ . The line of thought is
that a description of the large scale deformation in terms of large scale
average derivatives should give some idea of how much opening and closing
is going on on smaller scales and some idea of the state of stress. For
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example under a purely divergent motion only leads are formed. During a
purely convergent motion no leads are formed. On a small scale, shearing
along & crack is of no morphological consequence. But large scale shearing
is often expressed locally by opening at some cracks and closing at others.

Mathematical formulation of these ideas requires two stevs. Required
first is an appropriate quantitative description of the large scale defor-
mation in terms of observadble varameters. The second requirements ias for
a functional relationship giving the opening, closing, or state of stress
in terms of the observable parameters,

Current practice is to describe the motion in terms of the large scale
strain rate invariants, which themselves are constructed from the large scale
velocity derivatives. The first invariant

E‘I.;-P—;-"-o-%'

quantifies the large scale divergence and convergence, and the second invariant
[}
)t o) J /2
{('nt "03 ?x

ﬁua-vh’-{u "“L ra% .‘,- :LtarnQ\j . A uvH n\krv\a’n‘vf' rs{r ';. \'uVén.)n.'rf u'
(I} , 8)y Vhere

1£1= [Es' En‘J&

expresses the total rate of deformation and

- Fro
]
L o B< T

indicates whether the motion is predominantly divergence 6~0 , shear 6~ 72
or convergence H~7

In the theory presented by Thorndike et al., 1975, opening and closing
are assumed to be known functions of & and proportional to JE).

A = total opening = [El «a(B) ,

C = total closing = |E] oty (8) -

The functions e{, and &, which give the total opening and closing in
terms of the strain rate invariants may have a form somevhat as sketched in
figure 18, There is not much hard evidence to base these sketches on. In
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fact the functional relastionships for A and C in terms of If| and 8
can only be regarded as approximate since they 4o not take into account the :
actual geometry of the floes in the region being considered, Different ’f
regions with Aifferent geometries will respond differently to similar large

scale strain rates.
In practical applications of these ideasz the procedure has been to

take measured velocities at several points in s region of interest--perhaps

the three corners of a 100 km triangle., Velocity derivatives are estimeted
The estimated velocity derivatives are come-
» And these are used

from the measured velocities,

1 bined to form the strain rate invariants JE/ and §
10 find the rates of opening and closing A and C , and the state of stress 7T,

In the following sections we reexamine some of these ideas, particularly

4o bl b a6 ke ool N 31 .
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the notion of velocity derivatives, the influence of the ice pack geome:iry
on opening and closing, and the difficulties in basing inferences about
these quantities on small numbers of measurements.

5.L,1 Velccity derivatives
Since the ice pack is made up of discrete pieces moving relative to each

At tn il i b i |

other, the variations in velocity have two types:
1) for any X, and X, on the same rigid piece, the linear relation

v el bbbt

L “Slmes \"Lv x,) must hold, where o

-

W)= wln )=

b st v

& tat &

is a constant related to the rate of rotation of the rigid piece.

2) for {(. and %; on separate pieces,

DL T RN E PN

ulx) - ,:(:(,) is arbitrary.

P 1t we select a random point (1,’) on an ice floe, the partial derivative

of velocity,

: W (ayd) £ Ehpt) o ulnpl)
: DX o J 4 ;
k

B is well defined because for small enough f N (ox,,) » and (14‘. ’) almost

alvays lie on the same floe and the linearity of the first type of motion
Thus the partial deriva-

It

mentioned abdove impliez the existence of the limit,
tive exists, dbut it describes only the rigid body rotation of a floe,
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says nothing about the relative motion between floes which iz after all the
motion causing the opening and closing and the exchange of momentum between
floes.

To include the effect of velocity differences between floes we cannot
let f\ become arditrarily small., Consider the velocity increment
Wby t) - ulxyt) where (x3) is fixed and R begins at 100 knm
and decreases to the smallest value R, such that (x+h,,y) and (xy) 1lie
on separate floes. This increment captures the variation in velocity from
floe to floe and has nothing to say about the rigid rotation of the floe
(%,4) lies on. The velocity increment will generally decrease as [
approaches g. » and ve can examine the characteristic rate of decrease by
evaluating the variance £ (u(-xo!\,,,t) -t«(*.g.i‘))a . If this quantity
is proportional to e\a for small £ , the velocity at least has a derivative
in the mean square sense,

The best data available for examining the variance of velocity increments
for a range of spacings were extracted from SEASAT synthetic aperture imaging
radar by Hall and Rothrock. By comparing two images separated by three days,
they were able to measure the displacement of enough ice features to resolve
the full spatial detail in one dimension of the ice motion. After interpo-
lating to evenly spaced points %; their data have the form

{“’“t) Vi) | it N, Ax* 2 hkm.

?

Given £= l, «vey the ﬁ-increments were deflined as

Ih) = wlx,g) - wiz)
: L8,8) = vixgg) - VA .
The variance of the increments was estimated from the {I,(Z.i).Iy”»)}, vl N-R
with the results plotted in figure 1). The linearity of the log-log plot
for small § supports a power law relationship with war (I(R)) rc B™ with
o jn e weighber heel & 1) % .3 . Tt sppears
then that the increments do not decrease as fast as l 2 , and therefore
the velocity does not have a derivative in the mean square sense,
The statement Just made for the variance of increments can be recast in

terms of the autocorrelation function. It implies that for small v
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thus helping to define the shape of 9‘ and B, at r*0, At weo , GII
and ©, have the value unity, are continuous, have a continucus first
derivative of zero, dbut fail to have a second derivative.

5.L.2 Velocity differences

The definition of the derivative as a limit could be discarded in favor
of a velocity difference over a finite distance,

Ul (’o?ct) - "t [K(W*L,v,*) = “\(1:,4%)]

and similar definitions for wyy . VL Snd V. -

There is no Question about the existence of these differences. Defi-
nitions for strain rate invariants follow naturally by associating W, L
with 24/ 2% etc. in the earlier definitions. When L is chosen to be of
order 100 km, these definitions can be used to describe the large scale
deformation.

There are several problems with this approach. First, the L-dif‘ferer.-ces
carry no information about smaller scales. Second, no basis has been given
for choosing a particular value for |, . Third, measurements of velocity are
rarely available at uniformly .spaced points. Still most analyses of sea ice
strain have been done with & length scale implicitly fixed by the scele of
the observations. To interpret these analyses we must deterrmine the rcle
played by L .

Consider the covariances between the various L -differences, These

follow from the covariance structure of the velocity itself, For examtle

E ug’)_(°.°ct) Wl"\_('» 0,t) - -i? E (u.(L,o,{') -u(°.°){/><“\("‘\-,°,'t)“‘\(';°.f,\>

="l‘.-‘ [Bn (rer) - 28y(r) + 6 ("L)J y (s)

To interpret this equation, suppose the L-di..“ference Uy, is measured

at tvo points separated by s distance ¥ along the X axis, The right hand
side of equation & approximates the second derivative of B' at T .
For small v, §; 4s concave down 80 the two | -differences are positivelyr
correlated. At some value of v , B, (r) nas an inflection point. Over
such a distance the L -differences become uncorrelated; at longer distances
the L ~differences are negatively correlated. This example has been worked

B- 2L

it ks B39 i i 1 «wuuh.nmm.mﬂu.u

etk ) il a A

RO RIDNN 7S PO X e sust o e e otor




for the Ugz,| component at points separated along the X =-axis, but the
same procedure can be used to correlate any two first velocity differences
at any two points. :

It is apparent from this and figure /6 that quartities related
to the L -differences are highly correlated in space only over distances
of less than about 400 km. Furthermore this statement is not sensitive to
the choice of [ » 8ince the expression J will change sign at approximately
the same 7 , independent of [ . The correlation length scale for velocity
by comparison is roughly twice as large (see figure 1{).

The ice velocities are well correlated at distances of up to 100 km,
as evidenced by the patterns in the long term ice motion (figures 2-L4) and
in shorter term motions (see Thorndike and Colony, 1980 for instance). It
may seen surpising not to find similar patterns in the strain fields. The
reason why such patterns are not found is that the strain field has, by
equation 5, and figure 16, a correlation length scale of only a few hundred
kilometers. Measurement arrays like the 1979 and 1980 buoy arrays with
8 buoy spacing of roughly 500 kilometers are too coarse to resolve patterns
in the strain field.

For the example just worked we can find the variance of the L -difference
by setting T<*®°© .
2
2 i&_(/_ zs;,(u).

E Wal = Lz

The symmetric matrix of covariancesbetween pairs of L -differences at the same

point is
Wa, L Vg, L Uy, L Vi, L
o | F[-80]  Fhfgf)-aE)] £ aE)-280) °
v,nL ;L%t [) - B”(L)) © %[“E(GL)-ZE(L/‘\)
' /
uph 28 [)- (b)) -}F[f%,(m)'@\ﬁlﬁ
o 3 {;- 3_L(L)]

— L
whew B2%(6*6).

This matrix can be evaluated at L = 400 km for example by reading points
from the plotted functions Gﬁ and Eﬂ_ in figure 1d.
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evidence is artiguous,

of the way the ice deforms.

W L V),L \ﬂ), L VL
Wy, L Iﬁxﬁme&' o gni’se® . -mo 'seit ®
VpiL 39018 0elt o L et
Yy 4018 09070 0}
Ve L LI i

Notice that the variances of

L= 400 hem
" . lota..‘ st

The covariance matrix for the l -differences illustrates several prcperties

the parallel 4if-

ferences Uy} and Vy,) are smaller than the perpendicular differences uy,.. @&nd

4 Yz,1 . The parallel differences relate to the linear stretching and

* contracting of the ice pack. The pervendicular differences relate to shesar
?‘ and rotation. Apparently the second type of motion is greater, but recsll
4) the weord of caution given earlier that the interpretation of this kinemz<ic

: We cannot say whether the observed motion rellects
E some property of the ice pack or some characteristic of the driving forces.
3 With the | -differences one could define [ -strains in a natural way.
The statistics in Table . of the | -strains follow from the above matrix.
These values predict, on the basis of the spatial correlations above, that
the large scale divergence will typically be smaller than the vorticity and

shear, a prediction verified by many different sets of observations.

Table Ji
L= stram varianté Lstrain in pzrten-* l": Jo.z io« variow
L(hn) ) I-\Sl'nz 4‘3 10 e SEC
100 200 4o goo
2.2 )b
divergencs Uit VL ¥ [’1 VB (L)- 8 J'L) B(»zL27 .6 217
v.-)it.‘}] Wit " Vi _}_[ t,guye' i )—r;;_(mf! 43 37 32 22
Shear war e A[4-1GH G @-8m) 3y s 24 /B
: 33 2% 4
ugL? %{9_9(&(0 -B”(ﬂl.) + G l.)] 34 ) .
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5.4.3 Deformation measurements

Several studies have been made over the past decade or 20 using obser-
vation of velocity at an array of stations, with the objective of monitoring the
large scale deformation of the region covered by the array, While it is never
stated Just this way, the implicit definition of large scale deformation appears
to involve spatially averaged derivatives over the region,

2 L A
\_; = A J...u J&
R
where A is the area of the region R sampled by the array. Similar exvressions
define the other large scale average velocity gradients. Apvlication of the

Green-Gaus theorem imrplies

T%%: a )§ Jﬁ‘lL :5’2 ol ' (€)
C

where # is the outward normal to the perimeter Cor R » &and Z a unit vector
in the X direction.

Note the difference between the L -difference and the large scale
average derivative. The former can be measured exactly as w(rel,y) - ulmy)
the latter requires measurements at every point around a closed curve. In the
next section we will discuss how many measurements are required to achieve a
desired accuracy in the large scale deformations. But first we review some of
the results of the studies jJust alluded to.

In these studies the deformation estimates were made by finding the
linearly varying velocity field which most closely fit the otserved velocities

at an array of points within R,
u(‘5)= E_La + MZ

where the matrix M contains the four large scale average velocity partial deriva-
tives, M and U, are determined using a least squares fit of the observed
velocities W and positions g . The strain rate invariants were then computed
from the elements in M .

The values, given in Table Y , confirm some of the results deduced
above from the observed spatial correlation functions. For example it is clear
that the vorticity is generally several times as large as the divergence. The
standard deviation of the divergence and the shear are roughly the same size,

but the mean shear is much larger than the mean divergence in most cases.
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The distribution of the invariant @ is plotted in figure2o . Note
that nearly alvays % <8<>% . 1In this range, the tvo principal values
of the strain rate tensor have opposite signs., The figure indicates that
it is almost always the case that vhen the ice pack is extending in one
direction, it is contracting in the perpendicular direction. Hibler et al.,
1974 also comments on this for strain measurements on a 20 kilometer scale.

It is also evident from Table V that the summer values are usually
somewhat greater than the winter-spring values, Presumably the ice pack
is weaker and offers less resistance to deformation in the summer. (The
alternative hypotehsis, that the driving forces are larger in the summer,
is not true.)

The mean quantities in Table V  produce large strains over the course
of a year. The year long deformations at the AIDJEX arrays are shown in
figurezJ. The region experienced a net clockvise rotation of about 35°,
The principal deformation involved a stretching of about 90% in the east-west
direction and a contraction of about LO% in the north-south direction., The
net divergence was not significantly different from zero., The two nested
arrays expressed similar deformations. .

Deformation estimates at a nurber of points in the central basin for
the years 1979 and 1980 are presented in figure 22, The strain ellipses
typically show large shear and small divergence. The only pattern evident
in the figure is the similar alignment of the major principal axis of shear
for the five points closest to the pcle, We should not expect to
see any patterns in the deformation displayed on this scale. Recall that
the spatial correlation function for L -differences has a length scale of
only about 400 kilometers. The deformations at points separated by greater

distances should evolve more or less independently.

5.4.4 Interpretation of deformation measurements
A number of authors have confronted the difficulties of describing

the deformation of this decidedly discontinuum. Nye (1973) for instence,

puts forward a definition of "strain on a length scale L ." By first smoothing

the velocity field using a kernel of length scale L, , he obtains a nev
velocity field which is differentiable and for which the usual notions of
deformation based on partial derivatives are valid. Papers by Hibler et al.,

1974 and Thorndike and Colony, 1977 take a similar point of view by attempting

to partition the ice deformation into two parts. The first part is assumed
t0 be asscciated with the spatial variation of the atmospheric and oceanic
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forcing fields and with the geometry of the basin, to have a characteristic
length of 103 km, and to be differentiable. The second part is associated
with the irregular, discrete geometry of the ice pack. It has length scalec
less than 10 km and is characterized by discontinuous variations in velocity.
In these papers, the first kind of variation is referred to as the large
scale, underly’ng, continuum, or linear part of the velocity field, while
the second is referred to as the small scale, local, perturbation, fluctuating,
or non linear part. Velocity variations of the first type are regarded as
signal and those of the second type as rioise. This nomenclature reflecis
the hope that any physical process of interest can be paremeterized in
terms of the large scale signal, with small scale noise only making it
difficult to measure the signal well.
This convention obscures the true nature of the velocity field which
is that it has variations on all length scales, with a smooth decreacse in
arvplitude for decreasing length scales, There is no clear division between
large and small scale. Furthermore there is no clear reason to associate
large scale with signal and small scale with noise. For studies involving
the actual opening and closing nf leads, the small scale phenomena may indeel
be the signal and it cannot readily be parameterized by the large scale motion.
Perhaps a better conceptuel model of the spatial structure of the ice
velocity is a system which accepts a smooth input and produces a discontinu-us
output. (A;simple example of such a system is the greatest integer function:
ij = greatest integer less than or equal to X .)
- The shift in emphasis from the earlier model is this. The earlier mo3del
viewed the velocity as the sum of separate contributions,one smooth, one
discontinuous. The alternative views the velocity as & discontinuous respcrcse
to a smooth input. This point of view may lead more naturally to vhenonme-
nological descriptions of the properties of the ice pack; through a comparison
of the input and output fields., To my knowledge this has not been attempted
because data with adequate spatial resolution of the velocity field are still
too scarce. Such a study would not explain why the velocity field had
certain properties. That explanation must be based on rather deeper understanding
of the geometry of the ice pack and the forces which act between floes than ve
bave at present. Still it would be useful to compare some of the properties
of the ice velocity with properties of the external driving forces, i.e., the
geostrophic wind and the ocean currents.
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5,&,5 o _Errors in estimating the large scale deformation

The large scale deformation estimates of the previous section are

subject to sampling variations since they depend on the particular array
of measurements points. There have been several attempts to quantify the
sampling errors. Hibler et al., 19TL4; Nye, 1975; and Thorndike and Colony,
1977 examined the departures of the measured velocities from the best fit
linear relationships., These departures, called residuals, homogeneity
variations, or nonlinear fluctuations, represent the variability of the
actual velocity field on scales smaller than the diameter of the region of
interest,

From observations over a 200 km scale taken during the spring of 1972,

Hibler et al., found root-mean-square velocity residuals of 0.06 ecm Sec'l,

compared to typical linear changes in velocity (L.3*/5* ) over 20 kn of

0.14 cm sec-l. Thorndike and Colony used observations from a 100 km scale

taken during the spring of 1975 and found rms residuals of 0.4 cm sec'l ard
typical linear changes over 100 km of 1.1 cm sec-l. Their summer values were
somevhat larger: 1l.l em sec-l and 1.8 cm sec-l for the monlinear and linear
contributions. These residuals can be regarded as errors with respect to the
large scale average derivatives for the region. When the number of otserva-
tions is small, the estimated large scale deformations are strongly contaminated
by these errors.

Using what we know about the correlation functions for velocity, we can
profitably address the sampling question from a different angle. Taking the
line integral definition for the large scale velocity derivatives, we ask:
how many points around the perimeter of the region must be sampled to resolve
the integral to some desired accuracy? Intuition suggests that the measure-
ments should be spaced closely enough to permit good interpolation but not
so closely as to be highly redundant. A correlation between velocities at
neighboring measurement points of 0.5 might be a fair guess; this would
indicate a spacing of about 400 km.

To get & better answer, we estimate the line integral in equation 6
around a circular region of radius r as

arr . ar .
Dy s"‘r"; w, edB;—”——- , B;s ("')ﬁ' y vo e, M.
T
Then as the number of measurements M increases, D, approaches /S .

Since 1Xq is a linear combination of velocity components, we can find its
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variance in terms of the variances and covariances of the velocity components
at all M points, and these can be evaluated in terms of the correlation
functions B, and BL . Let U ve the vector involving all 2 velocitv
components, (_A be the vector of coefficients, and R be £ l}lj:-r + Then

DH r ATQ_ and E:D:, s _ATRQ « This calculation has been done

for M = 60 vhich was large enough to resolve ‘ou x « The dependence
of (E D:.,)y" on the radius ¥ is shown in figure 2%a .

The figure shows that typical values for Sw/ax are about 1% per day,

decreasing somewhat as the radius of the region increases. Of course this

curve is a consequence of the observed functions B” and £, . The share
of the curve for radii smaller than 100 km remains speculative until more
details are known of the behavior of 3” and B.L for small arguments.

The variance of the error in estimatingm using only M points,
E(DM - Do )? can be calculated in the same manner simply by redefining

the coefficients in the vectoré « These results are vresented as a fraztion

of the signal variance F(D‘:) in figure 23} . When M is 3, as was the

case for AIDJEX 1972, the 1975~76 manned AIDJEX array, and LOREX 79, and

the radius was about 100 km, the ratic of estimetion error variance to

signal variance was about 0.25. For a radius of 400 km and a spacing between

stations of LOO km, ™M = 6, and the ratio of error variance to signal varience

is about 0.0l1. This confirms our intuition that a spacing of 400 km should

be adequate to resolve the large scale average velocity gradients quite well,

Figures 23¢C and 233 show results obtained in a similar way for the
and for the large scal: average diver-—

large scale average derivative 2Vv/?x

gence, Accurate estimation of the large scale average divergence has srecisal

importance because of the role it plays in the theory of the ice thickress

If we want to keep the rms error in divergence below say 207

’e

distribution.
of the rms divergence we require a ratio of variances in figure 234 of 0.2

For a region of radius 200 kilometers this level of accuracy can be achieved

i
- 0.0k,

with 6 measurement stations.

5.4, € The relationship between measured large scale deformation and tctal
opening and closing
Suppose a region of interest is intersected by & number of cracks, each
If the rates were known, the
In practice

of which is opening or closing at some rate,
total rates of opening and closing for the region could be found.

ve are not able to measure the motion at each crack, but only the motion of a

few points in the region. How are we to use these few measurements to esti-

mate the opening and closing?
B~32
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In an analogous situation in one dimension, we have & cracks each with

opening or closing rate u, i*h:o, Rk« We can imagine the velocity w to
be a random function of X having random discontinuities at random points
and being constant between the points. Suppose we have measured only the

motion at the end points of the region, un interval of length L . Then

A s hotal srcvu'n, ] é byt (u..', , o) )
| (7)
Q : bl tlgsm) : t Amin (‘4&. .) ,

L]
W wet .‘um?\) ardom'.) s A.,C._ ..g‘ w

and the problem is to estimate A and ( given Ul . At first sight the

situation seems hopeless. u clearly contains information about the net open-

ing or closing but not about the total opening and closing. However, knowledge
about the random variables k)u.“uu--‘ .Ax can be used to make probabalistic
statements about the opening and closing. Suppose for instance R has the
Poisson distribution with parameter A . This means that AL is the average
number of cracks in an interval of length L. . Then the probability of

finding k cracks in a random interval of length L is

pllAL) (L* €™/ k!

If )L = 0,1, for instance, the probability of getting k = 0 is 0.9231,
plk=s) = 0,0905, and p(k>7) = 0,0045. Therefore, with high probatility,
there is either no crack or jJust one in the interval and the observed value
of the velocity difference W would itself indicate the total opening and
total closing. Of course for larger AL it becomes more likely that several
cracks intersect the test interval, in which case the observed U cannot
separate the opening from the closing.

A similar approach for the two dimensional problem is to imegine the ice

pack to be crisscrossed by a family of random cracks, defined by the random
straight lines

z b+ y dmb; = T

vhere each 9‘ bas the uniform distribution on ( 0,97) and the normal distances
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from the origin to each line form a sequence of Poisson points. 1Imagine ?

%
that associated with each crack is a velocity discontinuity W, having

the Gaussian distridbution. This descrives a random vector field having
structure akin to the velocity field of sea ice. The observations of Hall

E and Rothrock can be used to estimate the parameters in the Poisson and

{3 GCaussian distributions. These random fields have the following properties,
§§ They consist of discrete rigid floes. The floes have a distridbution of sizes
determined by the Poisson field of lines. The Poisson lines are isotropic
and homogeneous. The velocity difference between any two voints is the j

vector sum of the velocity discontinuities encountered getting from one point

C ST RIP T PRI SPR T

el sl U 4,

‘ to the other,
1 At each crack the opening or closing is determined by the projection

s oty e L matinunt .

ot Dt

!
i of the velocity difference vector onto the normal to the crack. E

opening = max (o, W, ot B, vy b B )

]
E closing = min (o, W e B, »Vv; A B )

Thus it is a simple matter to evaluate the total opening and closing for anr

b ot sk 2 i S M o ool e s 5]

realization of the random field.
Of course one can also imagine measuring the velocity at a few pointe

and constructing the [-strain rate invariants from the observed velocities.
In this way one can test for a relationship between the | -strein rate
invariants calculated from a few sampled velocities and the total opening
and total closing found by tallying up the activity at every crack.

In an attempt to carry out this program, parameter values were taken
to dbe p =°-O‘Bkm'l. M =0, ¢-% = 1 (arbitrary units)‘?. An L =100 kr
triangle was used to simulate the sampling vrocedure used during AIDJEX.

A large number of random fields vere generated. x

Each realizatiun of the random field is defined by the sequences of !
random numbers k, b, u; v , ¢ for LT /ARREN k . Here the 9,; are drawn f
independently from the uniform distribution on (%27) . The values for |

¥, form a Poisson process with parameter A . This is achieved by dravineg
independently from the exponential distribution

. the increments A+1y, - T
l with density )e"m « The process is terminated as soon as T exceeds

100 kilometers since none of the subsequént .lines would intersect the 100
kilometer region. Finally the &; and V; were drawn independently from

the normal distribution with zero mean and unit variance.
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For each field the velocity was measured at the three specified points
and the L_-strlin rate invariants )E\ and 6 were evaluated, .
Also for each field the total opening and closing were evaluated using eq. 7 .
These were normalized by |E! and displayed versus b in figure 2¥, For each
realization of this random field two points are plotted,( R A/'F') and
(8,¢/E ) « From the plot it is clear that there are not unique values
of A/IF) wnd C/4El corresponding to a given # . Instead there is a
distribution of values for A/F| (and forg/fip ), and this distribution
changes with b . The distributiony sketched in figure 25, are broad in the
sense that probable departures from the mean are at least as large as the mean.

The interpretation of this exercise is that the total opening and closing
are only weakly determined by the | -strain rate invariants based on three
measurements 100 kilometers apart. Had the relationship been a strong oﬁe
the distributions in figure 25 would have been narrower, Or to say it differ-
ently, the points in figure 2¥ would have clustered more closely around
curves like those in figure /€ . It may still be useful to imagine these
smooth curves but only with the recognition that the actual opening and
closing scatter widely about the imagined curve:

AZ/E' 2 w,(B) + random error

S/;) . ool B) + random error
I g r

where the random terms and the 0 -dependent terms make roughly equal contri-
butions to the total opening and closing.

The total opening and closing are an essent'al part of the theory of
the ice thickness distribution. The above results suggest that it will be
difficult to estimate the op....ng and closing accurately. Perhaps the best
that can be hoped is to drive the thickness distribution calculations with
opening and closing time series which have the right statistical properties
even if they may have large errors on a day to day basis. The statistical
properties can be inferred from figureZV . Of course this figure is the
consequence of a particular conceptual model motivated by a limited data
set—-the SEASAT SAR data from early October 1978. More data need to be
collected and studied before these ideas can be extended to other times and
places with confidence.
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5.4.7 The relationship 5etweeg kinematics and stress

Kinematic data can be used for studying the relationship between
stress and straln for sea ice, Suppose for instance that the state of stress

o i g Nt L e et

tensor 0 suitably averaged over some region, is related to kinematic quan-
tities cand the ice geometry 8 by some expression of the form

ol

' G+ F(Q,S) .

E Although ¢ cannot be measured directly, its divergence ¥V:T can be inferred
. indirectly from the observed momentum balance when all the other terms in

that balance are known. If a particular function F is hypothesized, it

- | can be tested by evaluating both sides of the equation TZg ® V- F(€,5)

the left hand side as a residual from the momentum balance and the right
hand side in terms of observed kinematic and ice geometry quantities, This
was one of the objectives of AIDJEY (Maykut et al., 1972). 1In practice

L the test is difficult to make since neither V-0 nor V-F can be deter-

mened very accurately from observations. See Rothrock et al., 1980.

Under special circumstances, meaningful tests may be poscsible, however, 3
When the ice deformation is strongly divergent, ice floes tend to move apart. ]
With no floe-to-floe contects there can bve no V-0 forces. The left hand 3

side should differ from zero only by measurement error. These errors are
probably small enough to permit a useful test,

Another special situetion of interest is when the ice is being forced
up ageinst the coests by the wind, As the ice moves toward the coast it
converges, becomes stronger, and eventually becomes strong enough to resicst
further deformetion. If the on shore winds persist, a zone of motionless
ice can widen to several hundred kilometers (Pritchard, 1977). In this situa-
tion, intuition suggests that the V¢ vector should point off shore and
should increase in time until it balances the on shore wind stress. With
simultaneous ice trajectories at 100, 200, 300 and 400 km from the coast
it should be possible to observe the amount of convergence reguired to pro-

e st 2ot il LA

duce the required resistance to the wind,

At greater distances from th: ~oasts, there is evidence that the ice 1
stresses embodied in V'€ are usually small. Little success is anticipated
in trying to observe them. Any stress-strain lawv vwhich provides adequate 3
resistance to deformation near the shore iérprobably adequate for full hasin
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dynaric modelling. ‘The observations may never be adequate to discriminate

very selectively betveen candidate stress=strain laws.

2:2 Discussion

1 have tried in this paper to bring together some of what is known
about the motion of sea ice. The emphasis has been on the departures of
the true motion from the long term mean circulation., This is a compari-
tively new topic, the investigation of which has only recently been made
Possible, mainly by the developments of satellite positioning techniques,
Perhpas because of its newness, the field lacks a clear agenda of questions
0 be mnswered. Instead ve are still trying to characterize the motion, to
determine the magnitude of the motion on different scales and to identify
motions which have some intrinsic interest or are related to other phenomena
of interest. It is not surprising that contributors to the field have dif-
ferred in their approaches to observing and interpreting the motion.

The time and space corelations have been used extensively here for
several reasons. First they give a compact description of the motion. 1In
principle, the correlation function involves one time and two space variables,
but in practice a great deal of information can be extracted from three
functions each of a single variable: Q(!L GN(?) and Q;(*). Second,
these three functions are accessible to observation. Third, prope 'ies of
nearly all kinematic quantities can be deduced from these functions,as illus-
trated, ad nauseum, in the text. Fourth, these functions form the rigorous
basis for answering questions related to interpolation, prediction, and
experiment design.

Many of the results presented here are based on sample autocorrelation
functions deduced from limited data. The data available for esti-
mating correlations at small space lags (less than 100 km) are meagre indeed,
More work along the lines of Hall and Rothrock would help to resolve this
part of the correlation function. The behavior of the correlation functions
8“(1') and O (+) in the limit of small T is an important property of
the motion related to the granular rature of the jce pack.

' As mentioned in the text,care must be exercised in choosing correlation
functions or contradictions (negative variances) can occur. In fact this

has happened in some of the calculations done using the correlations tabulated
in Table'ﬂf with linear interpolation to intermediate distances. This means
that the piecewise 1linear function defined in the table is not positive
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Table VI, Spatial correlation functions for sea ice velocity.

% ) 1
i Distance (km) :
: cH 2 i
3 0 1.00 1.00 ;
| 100 .98 .95 ;
200 .91 .84 ]

? 400 .68 .51 g
3 800 .37 .06 g
! 1200 .19 -.09
i 1600 .10 -.10 1
i 2000 .01 -.06 ?
ﬂ 2400 .00 .00 5
J
: :
3
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definite, A useful objective would be to find a positive definite analytical
form vhich approximates the observed correlations including the behavior
as T approaches zero.

The Poisson-Gaus model, presented as a way to study the relationships
batween the local opening and closing and the large scale deformation has
suggested that the relationship may be weak, Observaticns against whieh
to test this suggestion are sorely needed.
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(a) Latitude of ice station Caribou, versus time, 2 Sept-16 Nov 197S.
NavSat dutu,camuling interval, 2.5 days.
(b) Latitude of ice station Bip Bear, versus time, 2-15 Sept 1975.
Navint datu, sampling interval, b hours,
(e) Arbitrury y=coordinate of Rip Rear, versu: time, 2-3 fept 1075,
Acousltic Leackinge datag samplingg interval 1% mlonale:s,
(a) Arbitrury x-coordinate of Big Beur, versus time, 2 Sept 1Y(Y.
Acoustic tracking data, sampling interval one minute.

Only in (4) is the measurement error visidle (£3 m).
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Figure 8. The power spectral density of the velocity of ice station Caribou 1975-76.
The uwnite of spectral density are velocity?/frequency, cm?® sec™!. The
total velocity variance for these dsta is 145 cm? sec=2.
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The complex time correlation function for ice station Caridbou, 1975=-7€.
The velocity variance is 145 cm 2 sec= 2,

The time corrclation function for the % and V components of veloceity

from 28 grid points in the central part of the Arctic Basin, from drifting

tuoy data collected during 1979. The cross correlation between w ani

v is neplipible. Variance of W= 23 em? sec=?; variance of v = 22 cm? sec-2,
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(a) The resl and imaginary parts of the weight o to be used for inter-
polating to the mid point of a time interval of duration ¥ . The ratio
of the measurement error to the standard deviation of velocity is o/ .
(b) The variance of the interpolation error expressed as a fraction of
the variance of the jce velocity. Duata from figure 11 were used herc.
Loparithmic time neale. '
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Figure 15. A schematic representation of the X and components of velocity at
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' Dots are for AIDJEX manned camp data, spacing 100 km (Nye, 1976).
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Figure 21. Strain ellipses for the AIDJEX buoy array, 800 km diameter (a); and for
the AIDJEX manned camp array, 200 km diameter (b). The ellipses show
the deformation of a circular region on 1 May 1975, to the date indicated.
The principal axes of the ellipse are the vrincipal strains. The angle
from the horizontal broken line to the major axis is the princival
direction. The rigid body rotation is indicated by the arc from 2 to #.
Data from the Beaufort Sea, roughly a 500 km radius about TL®N, 1L5°W.
(From Thorndike and Colony, 1980.)

Figure 22. Strain ellipses from 1979 (solid line) and 1980 (broken line) driftinr
buoy data, showing the year long deformation of an initial circle
(dravn over Greenland).
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Figure 23. (a) Tvpical values for large scale average strain rate quantities are
functinns of the radius of the region over wnich the average is taken.
(b) The estimaticn error for various averape strain rate quantities
denends on the radius of the region andi on the number of measurements

made around the perimeter.
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Figure 25. Distributions of the total opening for several ranges of é . Data taren é
from figure 2k. 4
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